CODA final report

September 29, 2012
Hennie Brugman

CODA - CATCHPIlus Open Document Annotation - final report | 1

Table of Contents

(00 072N {15 F-1 [7=Y + Yo T o AUt
1 EXECULIVE SUINIMIATY....icieieieeeresresseseesssssssessessessesssssssssessessessessssssssssessessesssssssssssssessessesssssssssssssessesssssssssas
I O 1453 4 1= P
3 Use case context and description
3.1 Entity detection on manually created manuscript transcription texts ... 6
3.2 Automatic line strip detection as tranSCription QIoeeeroneeonsessessmssonssossesseessnes 7
3.3 Show layered annotations in @ SyNCArONIZEAd VIEWEToweorveneerseerssessenssesssssasssassesssessnes 9
4 Annotation MOdeling ChOICES ...ttt ss s
Technical 1eSSONS 1€ATNEM ...cuuieeereereereees s ss e sses s s
(ST 8 (o) [=Tor o> (Ta BN o] ¢ U (=) o X0 ol o
6.1 TASK OVETVIEW.curoririirtsirssirsscrssisisssstsssivssesissisissisissssssssssscsassesasssssssssssssssssssassessssssssssssssssansesanss
6.2 CODA PTOAUCES ceoreeoerererersersserssesasssassesssesssssassssssssssessssssssssssesssesssssassssssesssesssssssssassesssessssssssssssssesssesas
6.3 Publications aNd PreSENEALIONSwrmmrrsereesseessssassesssessesssssssssesssessessssssassessssssssssssssssssssesssssas
oY A 0 /Xy o o] =2 S
7 Generalizable Results and CONCIUSIONSirerreeermeerseessereessesssessessssssssess s sssessssssas
Appendix A: Addressing segments of (body) text
Appendix B: Composition of annotation Targets and Bodies......comneenmeenneneeeneeneceseeens 26
Appendix C: Layered annotationsS ... eeeseeseeseesessessssssesssssssesssssssesssesssesssssssssssssesssasssssssesssees 28
Appendix D: Open Annotation Server and annotation qUETIESoeermeerneeneeeseesseesseesens 30
Appendix E: Application of the OAC model across CATCHPIUS CaSES.....couunrrurmerneeereemeeereenens 35
Appendix F: Application of SharedCanvascneeneeneesseesesssesseesesssessssssssssssssssssssssssssssees 38
S5 2] =3 Lol 1P 39

vl

2 | CODA - CATCHPIlus Open Document Annotation — final report

1 Executive summary

The CATCHPlus Open Document Annotation project (CODA) was executed as one
of the OAC phase II experiments with funding of the Andrew W. Mellon
Foundation. The project team consisted of researchers and software developers
at the Meertens Institute and at the Computing and Cognition department of the
University of Groningen. The team had help and advice from Henny van Schie at
the Dutch National Archive, the provider of the collections used for CODA.

The project builds on and adds to the results of the CATCHPlus project.
CATCHPlus is a valorization project that is associated with the Dutch CATCH
research programme. CATCH includes a number of application driven research
projects at large Dutch cultural heritage institutions. CATCHPlus builds tools and
services on basis of research prototypes and demonstrators from CATCH. In this
way it contributes to the digital cultural heritage infrastructure in the
Netherlands and Europe.

CODA had two main use cases: 1. Convert existing line-by-line transcriptions of
scanned documents from the index books of the Queen’s Cabinet to OAC and use
these OAC annotations as input for a Named Entity Recognition service. Output
of this NER service is also compliant with the OAC model. 2. Automatically detect
bounding boxes surrounding written lines on scans from the Sailing Letters
collection and represent these bounding boxes as Open Annotations. The
bounding boxes can be used in subsequent manual transcription tasks.

Our experiment’s use cases raised many non-trivial challenges concerning
representation of annotations of scanned documents using OAC, which we
managed to tackle. Other interesting issues arose from publication and search
scenarios. We refer to chapter 7 for a summary of the most important
conclusions with regard to the applicability of OAC for our use cases.

The CODA project successfully delivered the following products:

- Mappings and conversion software for ‘monk’, the proprietary format
used for line and word transcriptions of the Queen’s Cabinet collection
and for FoLiA, a linguistic annotation format produced by the Named
Entity Recognition software used.

- An OAC compliant Annotation server (OAS) that supports upload of
annotations and efficient and scalable text based search for annotations
on basis of all OAC classes and properties, Dublin Core properties and all
other text based properties. OAS instances can exchange annotation sets
using its built-in OAI-PMH data provider and harvester. It provides a
(linked data) publication platform for Open Annotations and contains a
SPARQL endpoint.

- Named Entity Recognition web service for Dutch texts

- Line strip cut out service for image scans

- Aview and search web application that contains synchronized viewers on
named entities, transcription text and image scans.

CODA — CATCHPIlus Open Document Annotation — final report | 3

- A website: http://coda-project.org that will be maintained, also after the
project’s end.

- Several reports about OAC modeling issues

- Two publications at international conferences/workshops

The CODA project was executed in time and within budget. Finalization of
software, making it available as online web applications and services and
publication of sources on GitHub will go on for a few weeks after finishing CODA.

Some of the software products of CODA may be of general use for the Open
Annotation community: the OAS annotation server was built by an expert
company using industry quality well tested components, and with substantial
CATCHPlus budget. The line strip cut out service may be very interesting for the
Open Annotation users that work with scanned scholarly documents.

The Meertens Institute intends to go on using Open Annotation and software

components developed in CATCHPlus and CODA in future projects and hopes to
be involved in Open Annotation activities after CODA ends.

4 | CODA - CATCHPIlus Open Document Annotation — final report

2 Overview

This report is a combination of final report and the reports that CODA is
committed to deliver. We start with a description of the main use cases that
CODA is covering: add a layer of named entity annotations to the transcription
text for scanned manuscripts, extract line strips and their boundaries from image
scans and show layered annotations in a synchronized viewer web applications.
We list challenges that these use cases provide for the Open Annotation model.
Chapter 4 presents the representation and samples of the annotation model that
we selected to cover our use cases. Chapter 5 plus the Appendices discuss the
problems, issues and modeling choices concerning the OA(C) model that we had
to make in detail. Chapter 6 reports about the actual execution of the CODA
project and the status of its deliverables. Finally, in chapter 7, we summarize
general considerations and recommendations about Open Annotation and its
model.

CODA — CATCHPIlus Open Document Annotation — final report | 5

3 Use case context and description

The next figure 1 show the overall architecture of CODA and CATCHPlus
software components. Components with check marks are developed in the
context of CODA. Included in the diagram is the sequence of operations
implementing our first use case.

3.1 Entity detection on manually created manuscript transcription texts
The steps in this use case are:

text ann.
visualizer

text
viewer

line ann.
component

region ann.
component

image
viewer

automatic line annotation
strip detection data

hi-res scans

entity
detection
service

upload u

KdK proprietary
annotations

transcription
text

entity
annotations

generic and
specific queries

Figure 1 CODA architecture

1. Conversion of existing manual transcriptions for scanned pages from the
Queen’s Cabinet index books. Both scans and manual annotations are
made available by the Dutch National Archive. The conversion is from a
proprietary format used by the Artificial Intelligence group at the
University of Groningen (‘Monk’) to OAC phase II beta format. For a
discussion of this conversion, see Appendix E, issue 1.

2. Uploading these annotations to the CATCHPlus Open Annotation Service
(OAS). This uploading is done using the SRU/Update protocol. Appendix D
discusses the OAS and its design considerations.

3. Retrieval of transcription annotations from OAS using SRU/CQL and/or
SPARQL. The transcription text is sent to a Named Entity Recognition
service.

4. The NER service is a REST style web service implemented on basis of
existing tools from the ILK Research Group at the University of Tilburg.
‘Frog’ is a morpho-syntactic analyzer and dependency parser that also
generates named entity annotations. Frog is combined with a CODA OAC
converter and wrapped with a web service wrapper (CLAM). Frog exports
linguistic annotations complying with the FoLiA model and format. The
converter maps FoLiA tokens and entity annotations to OAC phase II

6 | CODA — CATCHPIlus Open Document Annotation — final report

format. For a discussion of the FoLiA - OAC conversion, see Appendix E,
issue 2.

5. The resulting annotations are uploaded to and published via the OAS
annotation repository.

6. Combined image, transcription and linguistic annotations for a scanned
handwritten document are retrieved from OAS and displayed in
synchronized viewers: entities can be highlighted in a document text
viewer and their corresponding regions are shown in the image viewer
(see section 3.3).

This use case imposes a number of non-trivial requirements on the application of
the Open Annotation model:

- Layered annotations: the outcome of one annotation process (manual
image transcription) is the input of another annotation process
(automatic linguistic annotation of text).

- Intermediate storage between these processes is needed.

- Alternative text segmentations: both Bodies and Targets refer to different,
sometimes overlapping, segments of textual resources.

- Annotation of segments of inline body text.

- Retrieval of text annotations on basis of aggregated texts from multiple
targets (“the Hague”, a named entity composed from text from two
consecutive line transcriptions)

- Representation of sequence information

- For the transcription of scanned manuscripts there is a preference to use
the SharedCanvas model.

These issues are discussed in more depth later in this report.

3.2 Automatic line strip detection as transcription aid

The original Monk software starts with preprocessing images and automatically
detecting line strips: vertical coordinates indicating the top and bottom of lines.
These line strips can be overlapping, for example because of line curvature or
overlapping loops in the handwriting.

Lines on scanned images are best automatically detected if they are straight lines
going exactly from left to right on scanned pages.

The Sailing Letters collection has many examples of pages were lines are at best
straight with respect to rectangular bounding boxes that have different
orientations. (see figure 2).

The objective for this use case is to help human annotators by providing them
with automatically detected bounding boxes for written lines and/or cutout line
strip images that can be transcribed one by one. This makes manual drawing of
boxes obsolete and stimulates more fine-grained spatial alignment of
transcription texts. This spatial alignment helps scholarly analysis and is also
useful input for the Monk handwriting search software.

CODA — CATCHPIlus Open Document Annotation — final report | 7

Figure 2 Sailing Letter containing several text blocks with different orientations

The workflow is as follows:

1. The user uploads and inspects a scanned image in a special web
application, rotates it to the correct angles and draws bounding boxes
around regions that have more or less regular lines. These boxes have
position, heights and widths and an orientation angle on the page.

2. The image (URL) and the bounding box information are sent to a line
detection web service that is a wrapper around existing Monk image
processing software.

3. Cut out line strip images plus the coordinates of their bounding boxes are
returned and stored in OAS using an Open Annotation compliant
representation.

4. These images and line strip annotations can be retrieved at transcription
time as starting point for creation of manual transcriptions.

This use case introduces a number of challenges for the Open Annotation model
and for the SharedCanvas! model (Sanderson, 2011) that is an application and
extension of Open Annotation:

- Constraints/Selectors are relatively complex: image regions within other
image regions, sometimes with a relative rotation, non-rectangular
regions.

- Atseveral stages coordinate transformations are necessary. There are
alternative (SVG) representations to encode these transformations.

- Transcription is done in two stages: therefore we need a representation
for the intermediate, ‘empty’ annotation.

L http://shared-canvas.org
8 | CODA - CATCHPlus Open Document Annotation - final report

3.3

We end up with a multiple images: the original scan and the cut out blocks
and line strips.

Show layered annotations in a synchronized viewer

Use case 3.1 describes the creation of a complex graph of connected Annotations.
When choosing an Open Annotation representation for such a graph we need
requirements on basis of which we can make model decisions. Our requirements
are derived from the information necessary and the queries that are needed to
implement the following search and viewing environment:

1.

A user searches for a specific type of named entity (persons, locations, ...)
or a specific named entity (Albert Einstein, The Hague, ..) in an annotation
repository.

The system shows a list of document names that contain instances of this
named entity.

The user selects one of these documents.

The system loads all annotations for this document from the repository:
annotations that connect image scans to regions of a Canvas, annotations
that connect transcription text to regions of that Canvas (lines or words),
annotations that connect named entities to text segments of the
transcription texts.

The system displays image, text and entities. Selecting an entity will
highlight the corresponding text segments in the text view and the
corresponding regions in the image view.

CODA — CATCHPIlus Open Document Annotation — final report | 9

4 Annotation modeling choices

Implementing the use case from 3.1 requires a careful choice for the specific 0AC
representation that is used. Figure 3 illustrates the outcome of our modeling
efforts.

ImageAnnotation TextAnnotations EntityAnnotation

ct:3 hasTarget ea:l

/\ A\ > 7\

hasBody hasTarget hasTarget hasBody constrains hasTarget hasBody

SN N LN

a 1
Canvas1® ib:0 Gz constrains " ‘\t"

onstrains constrain cnt:chars

\‘nl cbl \

:ors:faml constrains cnt:chars ocation

ct:2 ‘cb:2 \
hasT.—)r‘gk Dit is een beschrijving van Den

hasBody
! Haag. En dit is een tweede zin."

imagnStun JPE

ta:2
Figure 3 OAC representation of CODA use case 3.1

Canvasl is the ‘base’ target for all annotations involved. Page scans or derived
image representations for line strips are associated using ImageAnnotations
(like ia:1).

Transcription texts are typically aligned with ‘word zones’ and/or ‘line strips’.
These are rectangular regions in the scanned image corresponding to a word or
line in the scan. Note that these lines do not coincide with sentences in the
transcription text. Since the Named Entity Recognizer uses complete sentences
as its starting point we took the following approach:

- We aggregate all transcription text for a manuscript page to one text body
(ib:0) that we associate with Canvas1 with a TextAnnotation (ta:0).

- Line or word zone annotations are associated with the corresponding
rectangles on the Canvas with separate TextAnnotations (ta:1, ta:2).

- These TextAnnotations are associated with the proper text segment of the
full text transcription in ib:0 via ConstrainedBodies. We need a special
type of Constraint for this.

The NER then uses the complete transcription text of the manuscript page, splits
it into paragraphs, sentences and words/tokens using its built-in tokenizer, and
adds linguistic analysis, including named entity annotations that point to one or
more tokens. Tokens are represented by oac:ConstrainedTargets.
EntityAnnotations associate an entity class (person, organization, location,
miscellaneous) with one or more of these ConstrainedTargets.

10 | CODA - CATCHPIlus Open Document Annotation - final report

A schematic RDF representation:

<ia:1l> a oac:Annotation ;
a catchplus:ImageAnnotation ;
oac:hasBody <imageScanl> ;
oac:hasTarget <Canvasl> ;
dcterms:creator "Hennie Brugman"

<ta:0> a oac:Annotation ;
a catchplus:TextAnnotation ;
oac:hasBody <ib:0> ;
oac:hasTarget <Canvasl> ;
dcterms:creator "Hennie Brugman"

<ib:0> a oac:Body ;
a cnt:ContentAsText ;
cnt:chars "Dit is een beschrijving van Den Haag. Dit is een tweede zin." ;
<ta:1> a oac:Annotation ;
a catchplus:TextAnnotation ;

oac:hasBody <cb:1> ;
oac:hasTarget <ct:1>

<cb:1> a oac:ConstrainedBody ;
oac:constrains <ib:0> ;
oac:constrainedBy <c:1>

<ct:1> a oac:ConstrainedTarget ;
oac:constrains <Canvasl> ;
oac:constrainedBy <c:2>

<c:1> a oac:Constraint ;
a catchplus:InlineTextConstraint ;
a cnt:ContentAsText ;

cnt:chars "<textsegment offset="0" range="30">"

<c:2> a oac:Constraint ;
a catchplus:SvgConstraint ;
a cnt:ContentAsText ;

dc:format "image/svg+xml"
cnt:chars> "<rect x="20" y="20" width="400" height="20">"

<ea:1> a oac:Annotation ;
a catchplus:EntityAnnotation ;
oac:hasBody <ib:1> ;
oac:hasTarget <ct:3> ;
oac:hasTarget <ct:4> ;
catchplus:chars "Den Haag"

<ib:1> a oac:Body ;
a cnt:ContentAsText ;
cnt:chars "location"

<ct:3> a oac:ConstrainedTarget ;
oac:constrains <ib:0> ;
oac:constrainedBy <c:5>

<ct:4> a oac:ConstrainedTarget ;
oac:constrains <ib:0> ;
oac:constrainedBy <c:6>

<c:5> a oac:Constraint ;
a catchplus:InlineTextConstraint ;
a cnt:ContentAsText ;

cnt:chars "<textsegment offset="27" range="3">"

<c:6> a oac:Constraint ;
a catchplus:InlineTextConstraint ;
a cnt:ContentAsText ;

cnt:chars "<textsegment offset="31" range="4">"

At the beginning of CODA we have been discussing the extremes of use case 3.1
in the context of SharedCanvas with Robert Sanderson, Benjamin Albritton and

CODA — CATCHPIlus Open Document Annotation — final report | 11

Herbert van de Sompel. Modeling solutions resulting from this discussion can be
found in (Sanderson, 2011b).

For use case 3.2 (the line strip cutout service) we designed the following RDF
representation for the annotations that are returned by the service. This time we
used definitions from the W3C Open Annotation draft specification because this
service might be useful to others using Open Annotations:

<textBlock> a oa:Annotation ;
a catchplus:LineStripRegion ;
oa:hasTarget <textRegion>

<textRegion> a oa:SpecificResource ;
oa:hasSelector <svgl> ;
oa:hasSource <canvas> .

<svgl> a oax:SvgSelector ;
a cnt:ContentAsText ;
cnt:chars "<rect x="200" y="300" width="100" height="100"
transform="rotate(-45,0,0)"/>"

<lineStripAnnol> a catchplus:LineStrip ;
a oa:Annotation;
oa:hasTarget <relativeLineBox> ;
oa:hasTarget <absoluteLineBox> ;
oa:hasTarget <polygonLineBox> .

<relativeLineBox> a oa:SpecificResource ;
oa:hasSelector <svg2> ;
oa:hasSource <textRegion> .

<svg2> a oax:SvgSelector ;
a cnt:ContentAsText ;
cnt:chars "<rect x="0" y="0" width="100" height="50"/>"

<absoluteLineBox> a oa:SpecificResource ;
oa:hasSelector <svg3> ;
oa:hasSource <canvas> .

<svg3> a oax:SvgSelector ;
a cnt:ContentAsText ;
cnt:chars "<rect x="200" y="300" width="100" height="50"
transform="rotate(-45,0,0)/>"

<polygonLineBox> a oa:SpecificResource ;
oa:hasSelector <svg4> ;
oa:hasSource <canvas> .

<svg4> a oax:SvgSelector ;
a cnt:ContentAsText ;
cnt:chars "<polygon points="200,300 270,230 305,265 235,335"/>"

For the line strip service several images are relevant: the full source scan, cut out
image blocks that contain more or less homogeneous handwritten lines and that
are send off to the line detection image processing software and the cut out line
strip images for each line. The connections with these images are represented
with a number of Open Annotations:

<lineStripImageAnn> a oa:Annotation ;
oa:hasTarget <relativeLineBox> ;
oathasBody <lineStripImageURI> .
<lineStripImageURI> rdf:type dcmitype:Image .
<fullImageAnn> a oa:Annotation ;
oa:hasBody <fullImageURI> ;

oa:hasTarget <canvas> .

<fullImageURI> rdf:type dcmitype:Image .

12 | CODA - CATCHPIlus Open Document Annotation - final report

As illustration we added three alternative representations for the
SpecificResource (or oac:ConstrainedTarget) that represents a line strip box: as a
rectangle relative to the cut out text block that it is part of, as a rotated rectangle
relative to the overall Canvas and as a polygon relative to the Canvas. Each of
these representations is viable, which one is best depends on the consumer.

In our the Open Annotation representation it is not explicitly clear how to
interpret coordinates and rotations. The model does not define which coordinate
systems to use. We used the following heuristic for annotation of image
resources:

“The coordinate axes that are used in the Selector of a SpecificResource are
determined by the origin and rotation of the Source of this SpecificResource”

This holds for all three of our alternative representations.

In our practical implementation of the CODA line strip service we chose one
alternative: line boxes relative to the larger text boxes that are selected from the
image.

A final remark: in the (Sanderson, 2011b) paper it was suggested to represent
rotated areas in an image with a ‘readingAngle’ property on SharedCanvas
Zones. For our case we did not use Zones, but SpecificResources, and used these
SpecificResources (text block regions) as Sources for another layer of
SpecificResources (line strip regions). ‘Rotation’ is now defined as part of our
SvgSelectors.

CODA — CATCHPIlus Open Document Annotation — final report | 13

5 Technical lessons learned

Technical lessons concerning the application of Open Annotations for the CODA
use cases are presented and discussed in a number of reports that are attached
to this document in appendices. Most of these reports were already planned at
the start of CODA and are project deliverables. On request a report about the
application of SharedCanvas to our use cases is added to the appendices.

14 | CODA - CATCHPIlus Open Document Annotation - final report

6 Project execution report

This chapter contains a report about actual execution of the project, deliverables,
related activities and obstacles met. It also guides the reader in finding the actual
deliverables.

6.1 Task overview

Design and implementation of Open Annotation Server

Description: in frequent ‘sprint’ meetings with developers of the implementing
company (Seecr) many aspects of publishing, serving and querying Open
Annotations were discussed and subsequently implemented.

Status: A full implementation of OAS for the core OAC specification will be
finished before the end of September 2012 (on CATCHPlus budget). CATCHPlus
requires production quality software that can be used in daily practice.
Therefore we found it necessary to attempt to do an upgrade of OAS to the most
recent W3C Open Annotation core specification (also on CATCHPlus budget).
This will be done in the first half of October 2012.

When: December 2011 - October 2012

Who:
- Requirements and design - Hennie Brugman (Meertens Institute) and
Erik Groeneveld and Johan Jonker (Seecr).
- Implementation - Johan Jonker, Eric Groeneveld

SDH discussions concerning SharedCanvas

Description: We explored applicability of the SharedCanvas model for the most
extreme use cases of CODA, added a few extensions to SC as a result, jointly
wrote a paper about it and presented that at the Supporting Digital Humanities
2011 conference in Copenhagen.

Status: paper was accepted and presented, it proved the applicability of SC for
CODA cases.

When: October - November 2011

Who: Robert Sanderson, Hennie Brugman, Benjamin Albritton, Herbert van de
Sompel

Testing OAS with SharedCanvas data
Description: Existing SC data from Robert Sanderson was used to test upload and

query functionality of the Open Annotation Server.

Status: after minor adaptations to OAS the SharedCanvas data uploaded to OAS
without errors and was sufficiently searchable.

When: March 2012

CODA — CATCHPIlus Open Document Annotation — final report | 15

Who: Hennie Brugman

Study FoLiA format

Description: the FoLiA linguistic annotation format and the tool that creates it
(frog) were discussed with their developer (Maarten van Gompel, Nijmegen
University). A new version of frog that creates named entities was made
available.

Status: ‘frog’ with entity recognition functionality is now made available from the
website at ILK at Tilburg University (http://ilk.uvt.nl/frog/)

When: March 2012
Who: Hennie Brugman

Manual creation of sample data (canvas and named entities)

Description: We selected the an OAC representation for our use case 3.1 (add a
layer with named entity annotations on top of transcriptions of scanned
handwritten images). Test data in RDF /XML was manually created for the
example shown in figure 3. This data was uploaded to OAS and queried to
determine whether the chosen OAC representation was adequate for the CODA
use cases.

Status: sample RDF is available. The representation is adequate for our use cases
and was used as the target format for our annotation conversion software.

When: April 2012
Who: Hennie Brugman

Linguistic Annotation discussion and modeling of Named Entities
Description: for CODA the only elements of FoLiA that are relevant are
words/tokens and entity annotations. However, FoLiA is an example of multi-
layer linguistic annotation. Several other annotation models and formats for
multi-layer annotations already exist. It is interesting to investigate in how far
these models can be represented using Open Annotation, or in combination with
Open Annotation. This topic was discussed in personal meetings and over email
for some time with other investigators involved in linguistic annotation.

Status: The discussion stopped without joint conclusions. As an experiment a
mapping from the POWLA model (Chiarcos, 2012) to OAC was made together
with the designer of POWLA (Christian Chiarcos). It seemed very well possible to
do such a mapping without the need for adaptations to the OAC model.

When: May 2012

Who: Hennie Brugman, Karin Verspoor, Kevin Livingston, Christian Chiarcos

Specify mapping of Monk and FoLiA to OAC

16 | CODA — CATCHPlus Open Document Annotation - final report

Description: we identified all elements of Monk and FoLiA that we needed to
generate the OAC representation mentioned above. In the case of Monk we also
did the reverse: for all information containing in Monk we identified an OAC
representation.

When: April 2012
Who: Hennie Brugman

Implementation of converters

Description: A Monk-to-OAC converter and a FoLiA-to-OAC converter were
programmed (using Java, the Sesame RDF library and Xpath). In case of Monk a
full conversion is made, maintaining all information in Monk. In case of FoLiA
only a partial conversion is made, extracting only ‘words’ and ‘entities’ from
FoLiA.

Status: the source code for the converters will be made available on GitHub at the
end of CODA. The FoLiA-2-0AC converter will also be made available as the core
of a Named Entity Recognition web service that takes (Dutch) texts as input and
returns named entities represented as Open Annotations. A variation of the
Monk-to-OAC converter is part of the CODA line strip detection service.

When: June 2012
Who: Hennie Brugman

Conversion of sample data sets

Description: a demonstration subset of the Queen’s Cabinet was obtained via
Groningen University, preprocessed, converted and imported into OAS.
Subsequently, named entity annotations were generated for this demonstration
subset and also uploaded to OAS.

Status: ImageAnnotations, TextAnnotations and EntityAnnotations for the
demonstration subset are available from OAS (and can be retrieved as the result
of querying, or as the result of an OAI-PMH harvesting operation).

When: June 2012

Who: Hennie Brugman

Synchronized viewer prototype

Description: a proof-of-concept web application was made that uses all three
types of Annotations in an integrated, synchronized image-text-entity view and
search application.

Status: the viewer will be available on the web by the end of September 2012

When: June 2012 - September 2012

CODA — CATCHPIlus Open Document Annotation — final report | 17

Who: Marc Kemps-Snijders (Meertens Institute)

Publish Sailing Letters data set
Description: the complete currently digitized set of scans for the Sailing Letters
collection is made available online.

Status: available online from October 8, 2012 on.
When: September 2012
Who: Rob Zeeman (Meertens Institute)

Build line strip detection service
Description: a line strip cut out service is wrapped inside an interactive web
application with OA compliant output.

Status: will made available online by Target Holding from October 2012 on
When: August - September 2012

Who: Lambert Schomaker (Groningen University), Rolf Fokkens and Minne
Oostra (Target Holding, Groningen), Hennie Brugman

Finalizing software for OAC
Description: debugging, final testing, packaging software and making it available
online.

Status: still going on at the moment of writing this report.
When: September - October 2012
Who: Hennie Brugman, Marc Kemps-Snijders, NN (Meertens programmer)

Upgrade software components to OA W3C spec

Description: Software components that potentially will be used by others will be
upgraded from OAC to the most recent W3C OA specification to make them
compliant with the emerging Open Annotation ‘standard’.

Status: to be done (on CATCHPlus budget)
When: September - October 2012

Who: Hennie Brugman (Meertens), Erik Groeneveld and Johan Jonkers (Seecr)

6.2 CODA products

The next sections describe the CODA deliverables. Development on these
deliverables will go on for a few weeks after finishing this report. Complete and
up to date information will be made available on the CODA website as products
become available: www.coda-project.org.

18 | CODA - CATCHPIlus Open Document Annotation - final report

6.2.1 Deliverable: mappings and conversion tools

“Mapping and conversion of existing and automatically generated annotations to
OAC compliant format (Queen’s Cabinet annotations, line strip rectangles,
internal format of the entity detection service, format of the annotation tool)”

Status: We mapped two annotation formats to OAC, Monk format and FoLiA. For
both we built converters. The Monk-to-OAC converter is used to convert existing
annotation for the Queen’s Cabinet collection and, in an adapted and OA
compliant version, for the line strip cut out service. The FoLiA converter is used
to convert output of the entity detection service. Our annotation-viewing tool
takes OAC annotations as input, no further conversion is required.

How to try it yourself: source code for both converters will be available on
GitHub. Executable instances of the software will be available as part of the line
strip cut out service and the Named Entity Recognition service that will be
available online by the end of the project.

6.2.2 Deliverable: OAC compliant annotation server

“REST API with OAC compliant resource representations for the CATCHPlus
annotation repository and service. The API supports storage and retrieval of
annotations. “

Status: this service is implemented, tested and implied for CODA use cases. The
supported version of the Open Annotation specification at the time of writing
this report is OAC phase II beta. Because we feel that this annotation service
potentially is useful for a much wider community, and because we intend to
apply the server in future projects we reallocated some CATCHPlus money to
upgrade the server to the current W3C Open Annotation core specification.

How to try it yourself: The server is based on existing, industry quality software
components that are open source (Meresco?). The server’s own sources will be
made available on GitHub by the end of the project. We will also publish at least
one ‘one-click-install’ versions to allow people to run instances of the server
themselves. Finally, we will run an own instance of the server containing
annotation samples from the CODA project at the Meertens Institute. Further
details will be put on the CODA website.

6.2.3 Deliverable: OAC search interface

“OAC search interface (RESTful): different levels for generic and specific search
for document annotations. The corresponding search user interface will be build
in the context of the CATCHPlus project”.

Status: the search interface is part of the Open Annotation Server software.
Search can be performed at the level of Open Annotations (using SRU/CQL as
query language) or at the RDF level (using SPARQL). Proprietary extensions of
Open Annotations are efficiently searchable as long as they are properties with
textual values. The OAS also contains a simple GUI that supports SRU/CQL and
SPARQL queries.

2 http://meresco.org

CODA — CATCHPIlus Open Document Annotation — final report | 19

How to try it yourself: see “OAC compliant annotation server”

6.2.4 Deliverable: Reports
“Reports about:

Addressing segments of body text for further annotation
Composition of annotation Targets and Bodies

Layered annotations

Generic and specialized query interface specification (RESTful)
Application of the OAC model across CATCHPlus cases
Evaluation of SharedCanvas in the context of CODA cases”

Status: these reports are written and added to this project report in appendices.

6.2.5 Deliverable: Component for annotated text
“A component for annotated text”.

Status: a proof-of-concept interactive web application is developed that provides
an integrated and synchronized view on image data, transcription text and
connected named entities.

How to try it yourself: we will publish a link to this web application on the CODA
website before the end of the project.

6.2.6 Line strip cutout service

Many people and projects transcribe digitized handwritten documents. It is very
useful to align transcription texts with regions of the scans as much as possible.
However, this spatial alignment takes a lot of time.

Monk annotations are generated starting with automatically generated cut out
line strips. The CATCHPlus project provided annotation components that
support efficient further alignment to word level with a few simple clicks.
Transcription efficiency is very high this way, as is transcription quality.
Because automatic line strip creation can be very useful to others as well, and
because we wanted to improve the line strip detection process, we developed a
line strip cut out service that exports its results as a set of line strip images plus
Open Annotations.

The service supports the following workflow: the user loads an image in an
interactive web application. The user can define blocks of text that surround
written lines, these blocks can have different rotations on the page. For each
block the pixel information is sent to the actual line detector that detects and
cuts out lines relative to the block. The results are combined and represented as
Open Annotations, and made available for download.

Status: the core service and a RESTful API wrapper are built. Line cutting turns
out to be possible with sufficient quality (of course this depends on the quality of
the uploaded scan). The web application is planned to be finished before the end
of the project.

20 | CODA — CATCHPIlus Open Document Annotation — final report

How to try it out yourself: the service will be online available as part of the Monk
software at Groningen University. Sources of the web application will be
available from GitHub. Links to service and sources will be provided on the
CODA website.

6.2.7 Website

The website www.coda-project.org was created (on basis of Wordpress) to
provide information about the project and to make results available. The
Meertens Institute will host this website for as long as it is relevant for the Open
Annotation community. The contents will be kept up to date with information
about ongoing development and potential new Meertens activities concerning
Open Annotation.

6.2.8 Data sets and annotation samples
Several data sets that are relevant for CODA are made available online or will be
by the end of the project:

Sailing letters scans: all currently available scans of the Sailing Letters collection
will be made available online by the Meertens Institute at an official launch event
on October 8, 2012.

Sailing letters annotations: the current collection is fully transcribed on a page-
by-page basis. These page transcriptions may be aligned at line or even word
level at a later stage using software developed in CODA. These (proprietary)
annotations are not yet available online, but might be in the future.

To demonstrate CODA results a set of 5 scans from the Queen’s Cabinet
collection is available online, together with their line strip and word zone
annotations as they are converted to OA(C). Also, the connected entity
annotations are made available. All annotations for this demonstration collection
are available from the OAS annotation server. More samples may be added in the
future.

Links to all online datasets and annotations are provided on the CODA website.

6.2.9 Source code

All project source code will be published on github by the end of the period of
performance. Names and URLs of the relevant Github repositories will be
published on the CODA website, once they are available.

6.3 Publications and presentations

Sanderson, R. Brugman, H. Albritton, B. Van de Sompel, H. (2011.) “Evaluating the
SharedCanvas Manuscript Data Model in CATCHPlus”, Supporting Digital
Humanities 2011, Copenhagen, Denmark, November 2011. arXiv:1110.3687.

Brugman, H. (2012) “A Publication Platform for Open Annotations”, ISA-7
Workshop on Interoperable Semantic Annotation at LREC 2012, Istanbul,
Turkey, May 2012.

Brugman, H. (July 26-27, 2012). Presentation at the OAC Phase Il review meeting,
Chicago.

CODA — CATCHPIlus Open Document Annotation — final report | 21

6.4 Obstacles

We did not experience unforeseen technical problems with software
development or ‘show stopping’ problems with applying the OAC annotation
model. We found some limitations of the model, but were able to overcome or
by-pass those. These issues are discussed in detail elsewhere in this report.
Communication with our contacts at University of Illinois at Urbana-Champaign
and other members of the Open Annotation community was frequent and
effective.

The delayed start of the OAC phase Il experiment projects caused some
hindrance. The project execution period now lined up with a particularly busy
period for the technical development department of the Meertens Institute. It
was therefore difficult to organize the required programming capacity. Also,
alignment of CODA activities at the Meertens Institute and Groningen University
was a bit more difficult.

Finally, the merger of the OAC phase Il beta model with Annotation Ontology
caused some troubles. Although this could in principle be ignored for the CODA
project itself, it had consequences for the usability of the software we developed,
especially for the CATCHPlus Open Annotation Service. Luckily, we found some
room in the CATCHPlus budget to invest in a version upgrade of OAS.

22 | CODA — CATCHPIlus Open Document Annotation — final report

7 Generalizable Results and Conclusions

This chapter summarizes the main general conclusions and recommendations.
Almost all of them are discussed at length elsewhere in this document and its
appendices.

- For transcription of documents (scans, audio/video recordings) it is a
good strategy to aggregate text segments to a full document text and align
this text with (spatial or temporal) segments of the document using
Annotations with ConstrainedBodies. In this way sequence information is
maintained and independent alternative text segmentations are
supported.

- Werecommend to add an InlineTextConstraint or
InlineTextOffsetSelector to the OA extensions document. This
Constraint/Selector should make it possible to select segments of text in
inline text Bodies or Targets.

- Although for our use cases we were able to find a workaround, it would
be useful to have a general recommendation about how to deal with
Sequences of Annotations. For example, the approach taken by the
SharedCanvas model could be generalized.

- Inseveral cases we used segmentations of segmentations of Resources. In
these cases we recommend

o toidentify the segments (ConstrainedTargets, SpecificResources)
with resolvable http URIs

o touse coordinate systems that are defined by the Source of the
SpecificResource in question (for example, define line strip
segments using coordinates relative to the text block that they are
part of. This block can be shifted or rotated with respect to the
document Canvas)

- Conversion of proprietary annotation formats to Open Annotation can
have many benefits

o Easier publication of annotations on the web

o Often information that is implicitly available is made explicit

o Open Annotations link related resources together. This may lead to
better data organization

o New types of queries are supported

o Your annotations can be combined with other people’s
annotations, or even be further annotated by other people

- Most annotations have textual Bodies. There are some issues concerning
search on basis of these texts:

o Bodies can be (parts of) external documents. To be able to search
for these annotations the external texts need to be resolved,
retrieved and possibly indexed first.

o Bodies can be segments of larger texts. To be able to search for
these annotations the Constraints/Selectors have to be interpreted
first, and the relevant text segments have to be retrieved and
possibly indexed first.

CODA — CATCHPIlus Open Document Annotation — final report | 23

24

We would like to see a recommendation in the spec about how to
represent Sets of Annotations.

Operations on complete Annotation resources require that it is exactly
clear what the boundaries of an Annotation are, so that it is clear what
triples are affected. We recommend that the spec defines this boundary
(compare this to ‘Concise Bounded Description’ -
http://www.w3.org/Submission/CBD/)

Publication of annotations on a server platform requires that this
platform assigns resolve http URIs where they do not exist, and that there
exists a resolver that is able to resolve those URIs.

Open Annotation represented in RDF is a very verbose way to represent
annotations. When converting proprietary annotations to OA this often
turns compact, human readable data into large, inaccessible files. This
may have a serious negative impact on the acceptance of Open Annotation
as a standard.

Good and easy to use software and especially software libraries may be
very important to stimulate acceptance of Open Annotation. This software
should not only facilitate consumption of Open Annotations, but also their
production.

CODA - CATCHPlus Open Document Annotation - final report

Appendix A: Addressing segments of (body) text

Problem description
Chapter 4 shows our representation of a complex network of Annotations. Some
issues arose and had to be dealt with:

1. EntityAnnotations have ConstrainedTargets that refer to text segments
that are part of inline text from the (published) Bodies of
TextAnnotations. The specification deals with segments of textual
resources, not with segments of inline Body text.

2. Annotations with textual bodies or targets typically have to be searchable
on basis of this text. However, this is not straightforward when
ConstrainedBodies or ConstrainedTargets are used.

a. ConstrainedTarget: the annotated text segment cannot be derived
just by resolving the Target resource UR], it requires resolving the
Constraint. Example: find all ‘location’ type named entities
referring to the text “Den Haag”.

b. ConstrainedBody: the body annotation text cannot be derived just
by resolving the Body resource UR], also in this case the Constraint
has to be resolved as well. Example: find all line transcriptions that
contain “Amsterdam”.

Discussion

Issue 1: To support annotation of text in Annotation Bodies we introduced a new
type of Constraint (InlineTextConstraint) that is closely related to
oax:TextOffsetSelector. It also uses ‘offset’ and ‘range’ to indicate a segment, but
in this case in the cnt:chars value of inline text represented as a ContentAsText
resource.

<rdf:Description rdf:about="urn:id:cb:1">
<rdf:type rdf:resource="http://www.openannotation.org/ns/ConstrainedBody"/>
<oac:constrains rdf:resource="http://oas.dev.seecr.nl:8000/resolve/urn:id:ib:0"/>
<oac:constrainedBy rdf:resource="urn:id:c:1"/>

</rdf:Description>

<rdf:Description rdf:about="urn:id:c:1">
<rdf:type rdf:resource="http://www.openannotation.org/ns/Constraint"/>
<rdf:type rdf:resource="http://catchplus.nl/annotation/InlineTextConstraint"/>
<rdf:type rdf:resource="http://www.w3.0rg/2008/content#ContentAsText"/>
<cnt:chars>"<textsegment offset="0" range="30"/>"</cnt:chars>
<cnt:characterEncoding>UTF-8</cnt:characterEncoding>

</rdf:Description>

Issue 2: In the CODA case queries are handled by the CATCHPlus Open
Annotation Service that is based on a combination of an RDF Store and Apache
Solr. Textual properties are indexed by the OAS at the time of uploading
annotations. Since OAS is intended to support only the OAC core model it does
not interpret text constraints. Therefore, we pragmatically chose to duplicate the
relevant search text for an annotation to a proprietary property of
oac:Annotation. In the case of our example, we added a ‘catchplus:chars’
property containing the texts of the constituent tokens “Den” and “Haag” (in the
correct order).

CODA — CATCHPIlus Open Document Annotation — final report | 25

Appendix B: Composition of annotation Targets and Bodies
Problem description

Our starting point for the use case described in section 3.1 was a set of
proprietary transcription annotations for line strips and or word zones. Line
strip transcriptions have sequence numbers per page and spatial coordinates for
top and bottom. Word zone transcriptions are tied to segments of the scanned
images using rectangular boxes relative to the lines they belong to.

Next to this spatial composition there exists a textual composition that is
especially relevant for the subsequent Named Entity Recognition process. This
process presupposes document texts that consist of a paragraphs that can be
broken up in sentences and tokens. However, sentences or named entities can
cross line boundaries in a document scan and can therefore not be based on
decomposition of text on basis of written lines on a page.

There were a number of issues concerning spatial and textual composition that
we had to deal with:

1. There was no document text to start with, we had to construct it from the
underlying transcription annotations, the sequence of lines and the order
of words within each line.

2. There was no uniform way to represent sequence of the various text

chunks.

We wanted to avoid too much redundancy of information.

4. One of our requirements is that it should be possible to determine overlap
of detected named entities (or sentences) with line and word zone
transcription texts to be able to highlight them in the context of the
scanned image. This textual overlap is specified in terms of character
offsets and ranges, which initially were not available for lines and word
zones.

5. Relative coordinates with respect to line strips had to be transformed to
absolute coordinates with respect to a Canvas, to comply with the
SharedCanvas model.

w

Discussion

Issue 1: While converting the proprietary line and word zone transcriptions we
kept track of ordering. On basis of this ordering we generated additional Open
Annotations: one at the ‘page’ level and others, where missing, at the line level.
For these annotations we also constructed a rectangular bounding box on basis
of the spatial information of their component annotations. The additional page
level annotation provides the full document text for subsequent entity
recognition.

Issue 2: This page level annotation also uniformly stores the order of line and

word zone texts in its Body: all line and word zone texts are represented as
segments within this page level annotation text using character offsets.

26 | CODA — CATCHPIlus Open Document Annotation — final report

Issue 3: We chose not to duplicate texts at page, line and word levels but instead
use ConstrainedBodies constraining the full text at page level. (However, to
support searchability we later had to add redundant text for text indexing - see
section 6.1, issue 2).

Issue 4: The page level text is segmented in lines and words by means of
character offsets with respect to this full text. The same page level text can be
alternatively segmented by our Named Entity Recognition service. The first step
of this NER service is decomposing the text into sentences and words (using
sentence splitting and tokenizing) within these sentences. This decomposition is
represented using character offsets with respect to the full text as well. Named
Entities have one or more tokens as their Target. Overlap of Named Entities with
line strips or word zones is now a matter of comparison of character offsets.

Issue 5: Coordinate transformations were a simple matter of combining available
spatial information about lines and word zones.

CODA — CATCHPIlus Open Document Annotation — final report | 27

Appendix C: Layered annotations
Problem description

Named Entity Recognition is a good example of a common practice in the domain
of linguistic annotation: use ‘annotation pipelines’ to stack ‘layers’ of annotations
on top of each other. Starting point is usually a text document (written, or the
transcription of a recorded speech act). Several annotation modules then add
analysis in the form of annotations, sometimes attaching the annotations to the
text, sometimes to annotations from previous annotation steps.

For the use case from section 3.1 this is also the case. The starting point is the full
transcription text for a scanned document. Our ‘annotation pipeline’ (called
‘frog’3) consecutively does sentence splitting, tokenization, morpho-syntactic and
dependency analysis and named entity recognition, adding the results each time
as additional annotations.

There are cases where multiple annotations are associated with a previous
annotation, in a specific order (order of tokens in case of NE recognition, order of
morphemes in case of morphological decomposition). For visualization and
query purposes it is important that this sequence information is maintained
when converting to Open Annotations.

Summarizing, we had to deal with the following issues:

1. Representation of sets of Annotations, corresponding to documents, or to
annotation layers within a document. It is very useful to be able to select
sets of Annotations for retrieval, updating, deleting or to restrict queries
to.

2. Sequences of annotations. Our use cases require that sequence
information is maintained after conversion to Open Annotations.

3. Using sub classes of oac:Annotation to differentiate between types of
Annotations.

Discussion

Issue 1: Strictly spoken, support for Annotation sets is a requirement for
annotation servers or annotation exchange protocols, not for the annotation
model itself. Furthermore, the OAC model implicitly supports definition of
Annotation sets by means of a combination of constraints on property values and
hasBody/hasTarget relations. Example: the set of line and word transcription
annotations for a specific document can be retrieved by a Sparql query like:

PREFIX oac: <http://www.openannotation.org/ns/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

SELECT ?anno WHERE
{

?anno rdf:type <http://www.catchplus.nl/annotation/TextAnnotation> .
?anno oac:hasTarget <http://www.catchplus.nl/annotation/NL_HaNa_H2 7823 0057>

3 http://ilk.uvt.nl/frog/
28 | CODA - CATCHPlus Open Document Annotation - final report

Nevertheless, an explicit provision or best practice recommendation for sets as
part of the OA specification would be very practical and provide a standardized
way to define sets (similar to named graphs in RDF).

Our, pragmatic, solution was to support sets at our annotation server, where
they coincide with OAI sets (being harvestable and deletable units).

Issue 2: In the CODA case we need the order of word and line annotations to
construct and display a full document text (with different text segmentations)
and to properly represent the text of multiword named entities (“The Hague” is
unequal to “Hague The”). In more elaborate use cases it may also be desirable to
be able to search for sequences (a “location” immediately followed by a
“person”).

For the conversion of Monk line strip and word zone annotations we used
available ordering information (line numbers in combination with horizontal
positions within lines) to construct an additional annotation containing the full-
page text and attached the OAC equivalents of line and word zone annotations to
segments of this full-page text. In this way, the full text provides the ordering
information. This is sufficient for visualization purposes. However, to be able to
search for specific lines or word zones we had duplicate text (see Appendix A,
issue 2). If sequence information would have been represented explicitly in OA
we could have constructed the full-page text at display time.

For conversion of the linguistic annotations from the output of the ‘frog’
linguistic analyzer we used a comparable approach. The output XML format
(called FoLiA#) contains hierarchical sequence numbers for paragraphs,
sentences and tokens. Relevant to maintain in the case of Named Entity
Recognition is the order of tokens in multi-token named entities (represented by
us as multiple Targets). Also in this case we additionally represented the
sequences by adding redundant text, this time in a properly associated with our
EntityAnnotations.

Although we managed to work around the absence of a representation for
annotation sequence in OAC in general it would be useful if there existed at least
a best practice recommendation. Possibly such a recommendation can be based
on the solution taken for SharedCanvas: a combination of rdf:Lists with
ore:Aggregations.

Issue 3: In line with the SharedCanvas model we used sub classes of
oac:Annotation to differentiate between Body data types. The main reason was
that we want to be able to retrieve those annotations by type: “return all
EntityAnnotations for document A”. From the W3C Open Annotation spec and
later discussions it became clear that there are alternative ways to use sub
classes of oa:Annotation, e.g. to express motivations. For future work, we now
prefer to represent Body data types using an additional rdf:type property on the
BOdy: <bodyURI> rdf:type dcmitype:Image .

4 http://ilk.uvt.nl/folia/
CODA — CATCHPIlus Open Document Annotation — final report | 29

Appendix D: Open Annotation Server and annotation queries
Problem description

The workflows in our use cases require storage and retrieval of annotations at
several stages. Also, we need a publication and exploitation platform for
resulting annotation sets.

In the CATCH program work was done on a generic RDF based annotation
repository and a model was developed (Brugman et al, 2008) for that. The main
aim was to provide a shared publication and exchange platform for
heterogeneous annotations of resources and resource fragments from cultural
heritage collections of participating institutions. In the CATCHPlus project a
robust version of this Annotation Repository is one of the deliverables.

Given the similar requirements and approach, the large community behind Open
Annotation and the quality of the OAC model at the start of CODA it was decided
to completely base the CATCHPlus Annotation Repository on the Open
Annotation model. Parallel to CODA, CATCHPlus developed its Open Annotation
Server (OAS). Development work was done by a small and highly specialized
company, Seecr>.

Objective was to create an annotation server that fully supports the OAC core
model. Supported functionality includes upload/ingest of batches of Open
Annotations (embedded in RDF files), efficient queries on Dublin Core properties
and all of the OAC core classes and properties, exchange of sets of annotations
using the OAI-PMH protocol, a SPARQL endpoint, web publication of annotations
according to linked data principles, including a built-in resolver. Annotations are
served complying to the OAC model and have all associated information inlined.
The OAS has a simple interactive Dashboard for management of users,
annotation sets and OAI-PMH harvesting jobs.

The OAS is implemented on basis of an industry quality software component
suite (Meresco) that provides functionality for SRU/Update, SRU/CQL, OAI-PMH
data providing and harvesting and efficient indexing modules for efficient search.
The internals of OAS include an RDF Store (OWLIM) and Apache SOLR for fast
and scalable text search.

OAS is easily installable and configurable. Sources are available on Github (see
the CODA website for details). For a more detailed discussion of the Open
Annotation Service see (Brugman, 2012).

During OAS development, the CODA use cases were the most challenging ones
used to test OAS. Many interesting issues concerning publication, sharing and
retrieving Open Annotations showed up and were discussed:

5> http://seecr.nl
30 | CODA - CATCHPlus Open Document Annotation - final report

1. Foringesting, updating, deleting annotations and for returning results
decisions have to be made about the ‘boundaries’ of an Annotation in an
RDF graph.

What are the ‘fields’ that have to be indexed for efficient querying?

3. How to store and search SharedCanvas data in OAS (that only supports
‘core’ OAC).

4. Publication requires resolvable http URIs for resources that often do not
have those when uploaded. Which resources require resolvable http
URIs? How do all sorts of identifiers of incoming annotations and their
components have to be processed?

5. Searching is usually done on basis of text. In many cases this text is not
part of the uploaded annotation (external bodies, external targets, foaf
profiles).

6. What queries have to be supported to implement our use cases?

7. There is a need for ‘annotation sets’.

8. Search on ad hoc collections of annotations (“harvest and search”). How
to compose those ad hoc collections?

9. How to deal with subclasses and rdf type inferencing?

N

Discussion

Issue 1: (annotation boundaries) Although annotations in OAS are represented as
RDF, operations are defined on Annotations, not on triples. For the usual (C)RUD
operations (create, read, update, delete) this means that all triples that ‘belong
to’ an annotation are returned by, substituted in or removed from the OAS.
Therefore, we had to make clear decisions about where the boundaries of an
Annotation are in its enclosing RDF container. We had to take into account that
Bodies or Targets can be shared by multiple Annotations, and that Annotations
or Annotation Body text can be the Target of other Annotations.

We used the following strategy for ingesting Annotations: starting at each
Annotation resource in an RDF file, every resource that is connected to it by an
OAC property belongs to the Annotation, except when this resource is itself an
Annotation. All triples connected to these resources via OAC, DC or any other,
properties, are also considered part of the Annotation and stored in OAS. All
other triples are ignored.

When serving Annotations, for example as results of a query, we use a similar
strategy to collect all of the Annotation’s triples and return them in a uniform
way. So, all information contained within the Annotation boundaries is inlined in
the result.

When deleting or replacing Annotations we take into account that there can be
more than one Annotation for a given Body or Target.

Issue 2: (indexes) The most generic and basic way to search in OAS is at the RDF
level, using SPARQL. Being an annotation server we added fast and scalable
search at the level of OAC Annotations as well. Using SRU/CQL as query language
it is possible to search on values of oac:hasBody, oac:hasTarget, rdf:type and a
number of Dublin Core properties. Also, it is possible to search on text contained
in oac:Bodies or for any text anywhere in an Annotation including in proprietary
property values.

CODA — CATCHPIlus Open Document Annotation — final report | 31

In cases where Annotations contain external Bodies, Targets or foaf profiles OAS
tries to resolve the URI to these external resources a couple of times. If successful
and if the resource is textual or XML this text is inlined and indexed to be able to
search on it.

All mentioned fields are made searchable on full text by indexing it (using SOLR).

Issue 3: (SharedCanvas) One test case was importing existing SharedCanvas
sample RDF documents (found on http://shared-canvas.org) into OAS. Import
turned out to be straightforward. SharedCanvas uses OAC Annotations to lay out
image and text on a Canvas. It also introduces a number of classes and properties
of its own, e.g. to represent Sequences and Ranges of Canvases, or ordered
aggregations of Annotations. The ingest strategy described under issue 1 picks
out the Annotations and all associated resources and properties as expected
(following ‘outgoing’ triples), and ignores the additional constructs concerning
sequences and aggregations (‘incoming’ triples). So OA does not offer full
support for SharedCanvas, but it supports important parts of it. It is very well
possible to use OAS in combination with a Canvas-like approach to express the
layout of images and texts using annotations.

Issue 4: (identifier management and publication)

At ingest time or when harvesting data several types of resource URIs can be
present in the imported Annotations: anonymous (no identifier), URN or URL.
Also, in the OAC model there are several types of resources that have identifiers:
Annotation, Body, Target, Constraint, ConstrainedBody and ConstrainedTarget.
With exception of ConstrainedBody and Constraint our use cases require that it
is possible to refer to instances of all of these resource types, internally
(annotations exist in the same instance of the Annotation Server) or externally
(over the web). An example is the case of text tokens that are used to attach
linguistic annotations to and that we modeled as ConstrainedTargets
representing segments of a text. Another example is the Annotation Body that
contains the full text of our scanned documents and that we use as the Target for
subsequent named entity detection.

Therefore, we implemented identifier-processing algorithms for each of these
resource types (see figure 4).

32 | CODA — CATCHPIlus Open Document Annotation — final report

Annotation

url

anonymous l
generate URN < resource >
. ~external TN

-
URN j URL in document

publish
v

store

|

index

Figure 4 Processing identifiers for oac:Annotation

Figure 4 shows this algorithm for the case of oac:Annotations. Each incoming
Annotation ends up with a resolvable http URL. All URLs that are not referring to
resources that are internal to the uploaded document are stored and indexed.
OAS includes a resolver that resolves http URLs for all resources published by
the OAS.

Where present original proprietary identifiers are associated with the published
resources by means of an additional dc:identifier property.

Issue 5: (inlining and indexing text) As part of the ingest algorithm the OAS tries
to resolve external bodies, external targets and extern foaf profiles three times. If
successful and if the resource is a text or XML document the contained text is
retrieved and indexed. This makes it possible to search on text values that are
not internal to the uploaded Annotations.

Issue 6: (scope of query language) We added full text indexes to the OAS to
support a number of queries that are obvious in the Annotation domain. Next to
an index for ‘hasBody’, that allows efficient search for Body URIs we added an
index for text inside bodies that enables fast search for Annotations annotated
with some text value. Another obvious query is for all Annotations that have a
specific resource as Target, directly or via ConstainedTargets (“find all
Annotations that have Canvas1 as Target”). The ‘hasTarget’ index also includes
all Annotations that are connected via intermediate ConstrainedTargets to make
these queries possible (bypassing oac:constrains triples).

Issue 7: (annotation sets) See Appendix C, issue 1 for a discussion. In OAS
annotation sets coincide with OAI-PMH sets. It is possible to restrict SRU/CQL
queries to specific Annotation sets (“search only in annotations for a given
scanned document, for a given collection, ..."”).

CODA — CATCHPIlus Open Document Annotation — final report | 33

Only the administrator of an OAS instance is capable of creating new Annotation
sets. Each set is associated with an API key so that each set can have a different
‘owner’ with ingest rights. ‘Batch delete’ of Annotations can only be done on a
set-by-set basis by the OAS server instance administrator.

Issue 8: (harvest and search) The CATCHPlus Open Annotation Server is not
primarily intended as a one-instance central annotation repository. It is designed
to be used at different levels: by individuals, project groups, institutions or inter-
institutional collaborations. This requires that OAS is easy to install and to
administer, which is the case. Additionally, OAS supports peer-to-peer operation.
Different instances of OAS can exchange sets of annotations using the built-in
OAI-PMH data provider and harvester. Exchange is on a set-by-set basis.

The idea is that all annotations relevant for a given project or task are harvested
to one place, where they are indexed. In this way efficient cross-collection
searches are possible (as opposed to distributed queries). This strategy is also
used often for linked data applications.

Issue 9: (subclasses and rdf inferencing) For our use cases we decided to
differentiate between different types of annotations: ImageAnnotations and
TextAnnotation as in SharedCanvas, MonkAnnotations to represent annotations
that are converted from Monk line strip and word zone transcriptions,
EntityAnnotations to represent named entities and LineStrips for automatically
generated bounding boxes around lines of texts in scanned documents. The
Open Annotation Server indexes any additional rdf:type property associated
with an Annotation and therefore supports search on rdf:type as part of its
SRU/CQL interface. It is not required that these additional types are sub types of
oac:Annotation, OAS does not have to do any type inferencing. We did not
explicitly define our Annotation types as sub types of oac:Annotation, but our
naming convention suggests otherwise.

The recent W3C Open Annotation specification introduces recommendations
concerning the use of subtypes of oa:Annotation. The recommended use of sub
types of oa:Annotation is to represent the reasons why an Annotation was
created. Our use of types is mainly to indicate the data type of the Annotation’s
Body (Text, Image and EntityAnnotations), but also origin (Monk annotation set)
and type of Target (LineStrip).

A good alternative for the ‘body type’ annotation sub types is to represent them
as properties or types of the Body. Origin is best represented using the new
oa:annotator or oa:generator properties, or with a proprietary property on the
Annotation.

34 | CODA — CATCHPIlus Open Document Annotation — final report

Appendix E: Application of the OAC model across CATCHPlus cases

Problem description

There are two cases of existing annotation formats/models that are directly
relevant for the CODA use cases: proprietary annotations in so-called ‘Monk’
format that exist for scanned document images in the Queen’s Cabinet collection
and linguistic annotations using the FoLiA format. The latter is the proprietary
annotation format that is exported by the ‘frog’ linguistic analysis and named
entity recognition software. As part of CODA we defined mappings of these
formats to OAC and implemented converters.

1. Monk conversion (in relation to SharedCanvas)
2. FoLiA conversion (and linguistic annotation in general)

Discussion

Issue 1: For the conversion of Monk annotations we chose an OAC representation
that is on the one hand compliant with SharedCanvas, and on the other hand
supports our requirements of layered annotation, annotation of segments of
inline body text and alternative segmentations of document transcription text.
For a discussion of the exact representation chosen see Chapter 4. We chose for a
complete mapping of Monk to OAC: all information is maintained in the Open
Annotation result. Furthermore, information implicit in the Monk format was
made explicit in the resulting OAC representation:

- text segment information (offset, range) with respect to the full-page text.

- boundaries of rectangles enclosing all word zones that are on the same line,
in case of absence a line strip annotation for this line.

- absolute spatial coordinates of annotation targets with respect to the Canvas

- dimensions of the enclosing Canvas (to be used when Canvas dimensions are
not defined otherwise, for example by the dimensions of the corresponding
image)

- association with the image scan, and optional cut out text block images or
line strip images.

A number of observations about Monk conversion:

- Conversion turned out to be relatively complex. Programming the converter
took more time than expected. This was mainly because of the complex OAC
representation chosen.

- 20 lines of Monk annotation data resulted in over a thousand RDF triples.
Partly this is because we made implicit information explicit and because we
added DC and proprietary properties to facilitate human inspection of the
RDF result and search. Still, most annotation communities are not RDF-
oriented. This ‘blowing up’ of data may prevent adoption of Open Annotation
by these communities.

CODA — CATCHPIlus Open Document Annotation — final report | 35

- The resulting OAC annotations connect related resources. One or more
images (full scan and cut-out line strip images), line strip and word zone
annotations are now all connected through the same Canvas.

- This, in combination with the implicit information that is made explicit,
allows new types of queries compared to the proprietary Monk format.

- Because we store converted Monk annotations in the CATCHPlus Open
Annotation server (that only supports core OAC classes and properties) we
did not convert to a complete SharedCanvas representation. However, we
used Canvas, ImageAnnotation and TextAnnotation classes from the SC
model. Sequence information for Annotations is represented by
concatenating all annotation texts in order and creating an additional
annotation that associates this text with the Canvas.

- Unlike the proprietary Monk format the OAC representation chosen for our
conversion allows multiple alternative text segmentations (lines, words,
paragraphs, sentences, word tokens).

- To be able to search for words or lines that contain some text we had to
duplicate the relevant text segment from the ConstrainedBody to a
proprietary property. Otherwise, it would have been necessary that the Open
Annotation Server interprets the Constraints of a ConstrainedBody at query
time (which implies different strategies for all kinds of Constraints and is
outside the scope of the core OAC model).

- We had to introduce a new type of Constraint that we called
InlineTextConstraint. This is a variation on oax:TextOffsetSelector where
‘offset’ and ‘range’ now refer to text enclosed in a ContentAsText object. Both
the OAC annotations for line strips/word zones and EntityAnnotations
resulting from the Named Entity Recognition process use
InlineTextConstraints.

Issue 2: (FoLiA to OAC conversion)

The CODA Named Entity Recognition Service is based on the ‘frog’ linguistic
analysis tool from ILK at Tilburg University. Frog is a command line based tool
that takes plain text as input and returns results in its own FoLiA annotation
format. FoLiA is a format to represent linguistic annotations. It is an XML format
that partly inlines annotations and is partly standoff. The input text is
hierarchically decomposed into paragraphs, sentences and words, each element
has a hierarchical identifier that encodes the level and the relative sequence
number within that level (e.g. xml:id="docname.p.1.s.4.w.1”). Each word element
contains extensive part-of-speech annotation, lemma and a morphological
decomposition. This decomposition refers to parts of the word text whereby
order of morphemes is represented using relative character offsets.

Additional to this textual decomposition syntactic analysis and dependency
structure are encoded in FoLiA using references to word ids. Finally, two
alternative sets of named entities are present, also encoded on basis of
references to words/tokens, where the order of tokens is relevant. An example:

<entity class="per" confidence="0" set="http://ilk.uvt.nl/folia/sets/frog-ner-nl">
<wref id="untitled.p.l.s.4.w.7" t="L.G.A."/>
<wref id="untitled.p.l.s.4.w.8" t="Vos"/>

</entity>

For conversion of FoLiA there are two alternatives:

36 | CODA — CATCHPIlus Open Document Annotation — final report

1. Full conversion of all linguistic annotations to OAC. During CODA
discussions with others in the Open Annotation community took place,
comparing alternative approaches and existing standards (like the ISO
Linguistic Annotation Format, (Ide, 2007)).

2. Conversion of tokens and entity annotations only. This is actually
implemented in conversion software that is part of the CODA NER Service.

Implementation of partial converter

Implementation of this converter was relatively easy and straightforward. The
converter is based on a combination of Xpath and an RDF library (Sesame®). It
takes a FoLiA XML file and a URL to a Body or Target containing a ContentAsText
object in OAS as input. Tokens in FoLiA are represented in OAS as
ConstrainedTargets with this URL as value for the oac:constrains property. FoLiA
lacks character offset information with respect to the source text, so our
converter had to derive that on basis of comparison of source text and FoLiA
document. Again, our InlineTextConstraint was used to indicate the relevant text
segments in the source text.

The Named Entities themselves are encoded as EntityAnnotations that have one
or more tokens as Target. The Body of these Annotations contains the entity
class (per(son), loc(ation), org(anization), misc(ellaneous)). Finally, a
proprietary ‘chars’ property is added to each named entity to encode the
sequence of tokens and to make the entities searchable (“find the hague” versus
“find hague the”).

6 http://www.openrdf.org/
CODA — CATCHPIlus Open Document Annotation — final report | 37

Appendix F: Application of SharedCanvas
From the start of CODA it was an objective to check the applicability of
SharedCanvas to the CODA use cases. We did this exploration in two ways:

1. We identified extreme use cases by analyzing the CODA use cases,

discussed them with Robert Sanderson, Herbert van de Sompel and
Benjamin Albritton, wrote a joint paper (Sanderson, 2011b) about our
conclusions and presented this at the SDH 2011 conference. We refer to
the paper itself for the conclusions. In general, it turned out to be very
well possible to address the needs of our use cases with SharedCanvas.
Only in a few cases minor improvements/extensions to SC were
introduced.

We did an actual conversion of existing proprietary annotations for the
scanned handwritten documents of the Queen’s Cabinet collection,
compliant with SharedCanvas principles but restricted by the capabilities
of our OAS Open Annotation Server (that by choice only supports core
OAC).

Discussion

For our use cases we did not need the full range of SharedCanvas classes and
properties to start with. For example Ranges, Lists and Manifests are outside
their scope. The classes and properties that we did need (including new classes
and properties suggested in the SDH paper) are not part of the core OAC model,
and are therefore not explicitly supported by the OAS server. So, our actual
experiments with SharedCanvas were not so much about applying its classes and
properties, but more about finding alternatives for them that are part of the core
OAC model.

38

SC uses Zones to provide objects with dimensions that can be associated with
a Canvas and can themselves be annotated. For example, in our case we
would use Zones to model an image region containing one or more lines of
handwritten text. Instead we used ConstrainedTargets/SpecificResources for
this, in combination with SvgConstraints/SvgSelectors. Instead of adding a
‘readingAngle’ property to Zones, we specified the rotation as part of the SVG
expression in the Constraint. See Chapter 4 for a discussion of this.

We represented Sequence information by concatenating annotation text
segments and using ConstrainedBodies and ConstrainedTargets that
constrain the concatenated text. The sequence information is implicitly
stored by the concatenated text. This is very case specific solution and does
not make SC Sequences obsolete in any way. On the contrary, there might be
several other annotation use cases that require Sequences outside the
domain of SharedCanvas.

CODA - CATCHPlus Open Document Annotation - final report

References

Brugman, H. Malaise, V. & Hollink, L. (2008) A Common Multimedia Annotation
Framework for Cross Linking Cultural Heritage Digital Collections, In Procs of
6th International Conference of Language Resources and Evaluation, Marrakech,
Morocco

Brugman, H. (2012) A Publication Platform for Open Annotations, ISA-7
Workshop on Interoperable Semantic Annotation at LREC 2012, Istanbul,
Turkey, May 2012.

Chiarcos, C. (2012) POWLA: Modeling linguistic corpora in OWL/DL. In: E.
Simperl et al. (eds.) Proceedings of the 9th Extended Semantic Web Conference
(ESWC 2012). Springer, Heidelberg, Heraklion, Crete, May 2012.

Ide, N., Romary, L. (2007). Towards International Standards for Language
Resources. In Dybkjaer, L., Hemsen, H., Minker, W. (Eds.), Evaluation of Text and
Speech Systems, Springer, 263-84.

Sanderson, R. etal. (2011). SharedCanvas: A Collaborative Model for Medieval
Manuscript Layout Dissemination, In Procs of 11th Joint Conference of Digital
Libraries, Ottawa, Canada http: //www.arxiv.org/abs/1104.2925

Sanderson, R. Brugman, H. Albritton, B. Van de Sompel, H. (2011.) “Evaluating
the SharedCanvas Manuscript Data Model in CATCHPlus”, Supporting Digital
Humanities 2011, Copenhagen, Denmark, November 2011. arXiv:1110.3687

CODA — CATCHPIlus Open Document Annotation — final report | 39

